
Implementing a
Basic Web Server
Lecture 3 (A)

index.js, server.js, and router.js (BASIC)

2Lecture Objectives

n Relevance to unit objectives:
n Learning objectives 1, 2, and 3

n To introduce the basic requirements for
implementing a web server

n To understand the basic HTTP response
handling mechanisms of a web server

n To use Node.js to write a simple web server
n To prepare for Lab 3 and Lab 4

3Lecture Outline

n Basic understanding of what sockets are and
how they are utilized in the technology that we
are learning

n Brief review of HTTP client / server methods
n Introduction to Node.js modules to implement a

Simple Web Server

4Sockets

n A socket is a programming language concept
which allows a TCP or UDP connection to be
formed between two network programs
n They serve as “end-points” of the TCP or UDP

connection
n That is, they are used to set up a “point-to-point”

connection
n Internet client and server code use socket

connections to send data from one side to the other

5Sockets

n Programmers establish socket connections by
setting parameters like port numbers, transport
protocol, etc.

n The socket API handles the details for TCP, UDP,
IP, etc.
n This is the concept of layered software

6

n In Node.js, the Socket() method is available
via the core modules ‘net’ and ‘dgram’

n However, in many cases, you do not have to
use socket directly. For example, in the http
module, the request() method would use the
socket method to create a TCP connection
with the server. As a user of the http module,
you do not need to use the socket method for
this purpose.

Sockets in Node.js

7More About Sockets

n You can learn more details about sockets and
how to use their APIs in the unit: ICT374
Operating Systems and Systems
Programming

n In this unit, we are more interested in the HTTP
request-response handling mechanism built on
top of the sockets
n Thus, we do not need to work at the socket level

HTTP Revisited
n An HTTP session is a sequence of network

request-response transactions
n A client initiates a request by establishing a

Transmission Control Protocol (TCP) connection
to a particular port on a host (ie, a server
computer)

n An HTTP server listening on that host : port
sends back a status and response message
n That is, the body of the requested resource or an

error message

8

HTTP Request Methods

n HTTP defines 8 methods indicating desired
action on the identified resource

n The resource could be pre-determined (static) or
dynamically generated
n In most cases, the resource will be a file or the

output generated by executing a program /
application (stored on the server file system)

9

n GET – requests a specific resource
n HEAD – similar to GET but without the body

n This could be used to retrieve meta-information in
the response headers

n POST – submits data to be processed to the
specified resource (modifies the resource)

n PUT – uploads a representation of the specified
resource (overwrites the resource)

10HTTP Request Methods

n OPTIONS – returns the HTTP methods that the
server supports for specified URL
n Can be used to check functionality of a web server

n TRACE – echoes back the received request so
that a client can see what the intermediate
servers have added or deleted

n DELETE – deletes the specified resource

11HTTP Request Methods

n CONNECT – converts the request connection to
a transparent TCP/IP tunnel, usually to facilitate
SSL-encrypted connection through an
unencrypted HTTP proxy

n NOTE: HTTP servers are required to implement
at least the GET and HEAD methods

12HTTP Request Methods

Example Client Request

n Client Request

GET /index.html HTTP/1.1
Connection: Keep-Alive
Accept: */*
Accept-Charset: iso-8859-1,*,utf-8
Accept-Encoding: gzip
Accept-Language: en
Host: ceto.murdoch.edu.au:12345
User-Agent: Mozilla/4.0

13

Example Server Response
HTTP/1.1 200 OK
Date: Mon, 23 May 2005 22:38:34 GMT
Server: Apache/1.3.3.7 (Unix) (Red-Hat/Linux)
Last-Modified: Wed, 08 Jan 2003 23:11:55 GMT
Etag: "3f80f-1b6-3e1cb03b"
Accept-Ranges: bytes
Content-Length: 131
Connection: close
Content-Type: text/html; charset=UTF-8

<HTML>
<HEAD>

<TITLE>My Web Page</TITLE>
<HEAD>
<BODY>

<P>This is my web page</P>
</BODY>

</HTML>

14

15HTTP/1.1 200 OK
MIME-Version: 1.0
Server: Apache/1.3.12 (Unix)
Content-Type: text/html
Content-Length: 131

<HTML>
<HEAD>

<TITLE>My Web Page</TITLE>
<HEAD>
<BODY>

<P>This is my web page</P>
</BODY>

</HTML>

GET /index.html HTTP/1.1
Connection: Keep-Alive
Accept: */*
Accept-Charset: iso-8859-1,*,utf-8
Accept-Encoding: gzip
Accept-Language: en
Host: ceto.murdoch.edu.au:12345
User-Agent: Mozilla/4.0

Web Client

Web Server

1. Constructs a request

2. Sends to server

3. Construct a response

4. Sends back to client

16Task: An HTTP Web Server

n We need to implement a basic HTTP web
server in Node.js, so that we can test various
web clients
n We will develop the server capabilities to be more

advanced next week
n It must be able to communicate with HTTP

clients using GET and HEAD methods and
possibly other methods such as POST,
OPTION, TRACE, etc.

17Node.js HTTP Server Method
n The syntax of the method used to create a

HTTP server in Node.js is:
http.createServer([requestHandler])

where requestHandler is a callback function
§ The createServer method returns a server

object, which can be assigned to a variable
§ The optional callback function passed to the

server method is called once every time an
HTTP request is received by the server

18Simple Web Server
n Our server script should do something very

simple:
n Respond to a request from a web client

n Listen on the designated port and IP numbers
n When a request arrives:

n Identify the requested resource from the URL
n Process the request as required
n Formulate the appropriate response

n It will use HTTP to do the transport
n This means it will only be able to communicate with

a HTTP client

19

1. LOAD MODULES – http module in this case

2. DEFINE A CALLBACK FUNCTION TO HANDLE INCOMING REQUESTS, PASSING THE
REQUEST AND RESPONSE OBJECTS AS PARAMETERS

a) WRITE A RESPONSE HEADER
b) WRITE THE RESPONSE MESSAGE
c) CLOSE THE RESPONSE MESSAGE

3. CREATE THE SERVER OBJECT PASSING THE CALLBACK FUNCTION AS A
PARAMETER

4. SET SERVER EVENT LISTENER TO 'LISTEN' ON PORT AND IP NUMBERS

n The basic structure of the script (from our
requirements on the pervious page) is:

Simple Web Server Algorithm

20Simple Web Server Script:
Callback Function

// server.js – layout used for clarity
// import http module
var http = require('http');

// define callback function with parameters
function onRequest(request, response) {
// write response header and message
response.writeHead(200,

{'Content-Type':'text/plain'});
response.write('hello client!');
response.end();

}

21Script Explained
n Firstly, import the appropriate module (http)

n Assign returned object to an instance variable
n Define a function to handle requests

n We have called this function onRequest()
n The caller of the callback function will pass request

and response objects the parameters
n The function creates a response header and writes

the response message
n Note the response.end() to end the response

message

22Simple Web Server Script:
Server Creation

// create server object with the callback function
// passed as a parameter
// assign created server to instance variable
var server = http.createServer(onRequest);

// set server to listen on port:ip numbers
server.listen(8888,'127.0.0.1');

// output messages to screen
console.log('Server running at

http://127.0.0.1:8888/');
console.log('Process ID:', process.pid);

Note: when you try the above program on ceto, please replace port 8888 with the
one assigned to you!

23

n Use http.createServer() method to create and
return the server object
n This method takes onRequest as a parameter

n The object is assigned to an instance variable

n Use the instance variable to set the event listener,
specifying the port and IP numbers in that order
server.listen(8888,'127.0.0.1');

n Output a message to screen
n Note: the process object is a Node.js global, just

like the console object.

Script Explained

24Running The Web Server
n To execute this server, save the script as file
server.js

n On command line type:
-> node server.js

// output to screen

-> Server running at http://127.0.0.1:8888/

-> Process ID: 1234

§ The reason for printing the process id (pid) is
so that the server can be stopped or ‘killed’
once you are finished with it

25Important Points
n This raises some very important points:

n Servers are written to run continually as
background processes (i.e., daemons)
n Numerous clients may attempt to send requests to an

http server at the same time
n An http server listens on a designated port number so

that it can handle incoming requests associated with that
port number, no matter how many requests there may be

n Each server you start will continue to run and
consume system resources if left running
n Continually running servers could also compromise

security if the server is not configured securely

26Important Points
n This raises some important points (cont.):

n As part of normal operation of a Web server, you
would want it to run continually
n As long as it is configured to run efficiently and securely,

there should be no problems with the server machine
n However, for our usage, it is very important to stop

or kill any server when you have finished using it
n Ceto is used by many students doing many units in

different countries
n If everyone leaves their server programs running

continually in the background, the machine will become
very inefficient and even crash!

27Stopping The Web Server
n For Node.js, a server like we have just seen can be

stopped or ‘killed’ using the kill command or
control keys
-> kill -9 1234 (for pid 1234)
(OR you can use Ctl-c on command line)

n For servers such as apache, you should use the
following apache control commands to start, stop
and restart:
n apachectl start
n apachectl stop
n apachectl restart

28IMPORTANT MESSAGE

n When you have finished working on
ceto.murdoch.edu.au, YOU must stop any
server process that you have started
n The sysadmin and you are the only two people

who can kill processes started by you
n Remember there are many people using this

machine, so many people running servers
unnecessarily will affect the efficiency of ceto

n If you do not stop them yourself the sysadmin
could become very annoyed

29Simple HTTP Web Server:
Alternative Layout

// an alternative layout commonly used
// NOTE the use of an anonymous callback function as
// the parameter in the call to http.createServer
// import http module
var http = require('http’);

// create server with anonymous callback function
http.createServer(function (request, response) {

response.writeHead(200,{'Content-Type’: 'text/plain'});
response.write('hello client!');
response.end();

}).listen(8888,'127.0.0.1’);

console.log('Server running http://127.0.0.1:8888/');
console.log('Process ID:', process.pid);

30

n Things to note:
n We do not assign the returned server object to an

instance variable; we just call the method from the
returned server object

n We define a callback function (our request handler)
and pass it anonymously into
http.createServer() as a parameter
n We discussed this approach last week

n Because we did not assign the returned server
object to an instance variable, the listen()
method is invoked using the dot notation

Web Server Script Explained

31Exporting the Server

n As discussed last week, in order for other scripts
to be able to utilize our web server, we need to
export it
n We only need to export that specific functionality

associated with starting the server
n We can do this by encapsulating the required

functionality in a function

32Exporting Our Simple Web Server

// using alternative layout

var http = require('http'); // import http module

function startServer() {

http.createServer(function (req, res) {

res.writeHead(200,{'Content-Type': 'text/plain'});

res.write('hello client!');

res.end();

}).listen(8888);

console.log('Server running on port: 8888');

}
// export the function

exports.startServer = startServer;

33Running the Server on Ceto
n When executing this server code on

ceto.murdoch.edu.au, you must use the port number
assigned to you; not 80 or 8888
Ø For the port assigned to you, see the Unit Information page

n You may also wish to specify the IP number or
hostname for ceto in the listen() method of the
server code
Ø If you do not specify the host name or IP address, the

server will listen on all network interfaces on the server
machine

n And do not forget to kill the server when you have
finished working

34Read the Scripts

n Study the scripts and analyze their operations
line-by-line

n Check with JavaScript and Node.js
documentation for any code that you are unsure
about

n In Lab 3, you will test your server with the three
client approaches that we will be discussing in
the next set of lecture slides

35Acknowledgement

n The code snippets were sourced from:
Basarat, A.S., Beginning Node.js

n The conceptual theory was derived from:
Node.js website: https://nodejs.org/en/
Basarat, A.S., Beginning Node.js

Implementing
Web Clients
Lecture 3 (B)

2Lecture Objectives

n Relevance to unit objectives:
n Learning objectives 1, 2, and 3

n To introduce the basic requirements in
implementing a web client

n To use Node.js to write a simple web client
n To prepare for Lab 3 and Lab 4

3Lecture Outline

n Briefly review our basic Web Server from the
previous lecture slides

n Use a Web browser and the Linux utility curl
to test our basic Web Server

n Introduction to Node.js modules to implement
a simple Web Client

4HTTP/1.1 200 OK
MIME-Version: 1.0
Server: Apache/1.3.12 (Unix)
Content-Type: text/html
Content-Length: 1234

<HTML>
<HEAD>

<TITLE>My Web Page</TITLE>
<HEAD>
<BODY>

<P>This is my web page</P>
</BODY>

</HTML>

GET /index.html HTTP/1.1
Connection: Keep-Alive
Accept: */*
Accept-Charset: iso-8859-1,*,utf-8
Accept-Encoding: gzip
Accept-Language: en
Host: ceto.murdoch.edu.au:12345
User-Agent: Mozilla/4.0

Web Client

Web Server

1. Constructs a request

2. Sends to server

3. Construct a response

4. Sends back to client

5Simple HTTP Web Server

// server.js – layout used for clarity

var http = require('http'); // import http module

function onRequest(req, res) {

res.writeHead(200,{'Content-Type': 'text/plain'});

res.write('hello client!');
res.end();

}

var server = http.createServer(onRequest);

server.listen(8888,'127.0.0.1');

// output message to screen

console.log('Server running http://127.0.0.1:8888/');

console.log('Process ID:', process.pid);

6Simple HTTP Web Server:
Alternative Layout

// an alternative layout commonly used

var http = require('http'); // import http module

http.createServer(function (req, res) {

res.writeHead(200,{'Content-Type': 'text/plain'});

res.write('hello client!');

res.end();

}).listen(8888,'127.0.0.1');

console.log('Server running http://127.0.0.1:8888/');

console.log('Process ID:', process.pid);

7Starting The Server

n To run the server on command line:
-> node server.js

-> Server running at http://127.0.0.1:8888/

-> Process ID: 1234

8Simplest HTTP Web Clients

n The two simplest clients to demonstrate the
working of an HTTP server are:
n The Linux utility curl
n A web browser

n The next slide show how to use these two clients to
test our http server

n Firstly, ensure that the server is running

9

n Using curl as the client on command line (in a
different terminal):

-> curl http://127.0.0.1:8888

-> hello client!

§ To display in a web browser, type the
following in the browser url:

-> 127.0.0.1:8888

OR

-> localhost:8888

Simplest HTTP Web Clients

10Task: A HTTP Web Client

n We want to implement a simple HTTP web
client script in Node.js

n It must be able to communicate with HTTP
servers using GET and HEAD methods and
possibly other methods such as POST,
OPTION, TRACE, etc.

11Node.js HTTP Client Method

n The syntax of the method to create a HTTP
client is:
http.request(options[,callback])

where options is an object to specify request header
information, and callback is an optional callback
function

12Simple Web Client
n Our client script should do something very

simple, which all web browsers do:
n Fetch the resource specified by a URL

n Send a HTTP request message
n Wait for a response
n Process the response when it arrives

n It will use HTTP to do the transport
n This means it will only be able to communicate with

a HTTP server

13

n The basic structure of the script (from our
requirements on the pervious page) is:
1. LOAD MODULES – http module in this case

2. CREATE 'OPTIONS' OBJECT TO SET URL, HTTP METHOD, ETC.

3. DEFINE A CALLBACK FUNCTION TO HANDLE INCOMING RESPONSES, PASSING THE
RESPONSE OBJECT AS A PARAMETER

a) SET UP EVENT LISTENER WITH DATA + ANONYMOUS FUNCTION PARAMETERS
b) CALL THE FUNCTION TO RECEIVE EACH DATA PACKET

1. CREATE REQUEST OBJECT, PASSING OPTIONS AND OUR CALLBACK FUNCTION AS
PARAMETERS

Simple Web Client Algorithm

14

// import http core module using require method
// assign return object to var http

var http = require('http');
// set options for client request with object literal
// here setting url, port, path, and method

var options = {

host: 'ceto.murdoch.edu.au',

port: 8888,
path: '/', // application root

method: 'GET' // no comma

};

Simple Web Client Script:
options Object

15Script Explained

n Firstly, import the appropriate module (http)
n Assign returned object to an instance variable

n Define the options object to set:
n The hostname
n The port number
n The required resource (in this case '/', which is

the root of the application)
n The HTTP method (in this case GET)

16

function onResponse(response){
response.setEncoding('utf8');

// event listener with 2 parameters

response.on('data', // data event

function(data){ // incoming data

console.log(data);
} // end anonymous function

); // end event listener

} // end anonymous function

Simple Web Client Script:
Callback Function

17Script Explained

n Define the function to handle responses
n We called this function onResponse()
n The caller of the callback function would pass a

response object as the parameter
n It includes an event listener response.on()
n The response.on() method takes two

parameters:
n A'data' event to accept incoming data packets
n An anonymous callback function which allows for

multiple packets of data to be received
n Note that in our example each packet received is simply

printed to screen

18Script Explained
n Note: UTF stands for Unicode Transformation Format.

The '8' means it uses 8-bit blocks to represent a
character.

n UTF-8 is a compromise character encoding that can be
as compact as ASCII (if the file is just plain English
text) but can also contain any unicode characters (with
some increase in file size).

n In the example, we use response.setEncoding to
set the character encoding so that the incoming
response body (data) will be returned as a string of the
specified character encoding rather than as a buffer
object.

19

var client = http.request(options,onResponse);

client.end(); // end request method

Simple Web Client Script:
Create Request

20Simple Web Client Script:
Script Explained

n Next the http.request() method is called to
create the request object

n The http.request() method returns an
instance of http.createClient class, which is
assigned to an instance variable

n The method takes two parameters:
n The options object
n The onResponse() function

§ Finally, the request object must be closed using
client.end();

21Why Client Script?

n You would typically use a web browser to
display developed web applications, so why
use scripts like the previous one?

n Scripts are used for testing your server code
whilst it is under development
n In particular, you can get access to header

information from both client and server
n This can help with debugging, if the

communication between them is not functioning as
you expect

22Accessing Response Headers

var http = require('http');

var options = {

method: 'HEAD',
host: 'localhost',

port: '8888'

};

http.request(options, function(response){

console.log(response.headers);
}).end();

§ The web client can access the header
information returned by the server

23Response Header
§ The options object literal includes the HEAD

method
§ The request method has two parameters:
§ The options object
§ An anonymous function with a response object as

its parameter
§ The argument passed to console.log is the

returned header information obtained by
response.headers

§ The end() function must terminate the request

24

var http = require('http');
var qs = require('querystring');
var options = {

method: 'HEAD',
host: 'localhost',
port: '8888'

};

http.request(options, function(response){

console.log(qs.stringify(response.headers));
}).end();

§ If the web client needs to process the header
information, querystring module is needed

Response Header

25

§ The querystring module is imported and
assigned to an instance variable qs

§ The options object literal remains the same
§ The request method again has two

parameters:
§ The options object
§ An anonymous function with a response object

as its parameter

Response Header

26

§ The qs object is used to call the stringify()
method, which converts the value of its argument

§ The argument passed to stringify() is the
returned header information obtained by
response.headers

§ Note: the output from this request will be one
long string that needs to be parsed to extract
the relevant information

Response Header

27Accessing Request Headers

var http = require('http'); // import http module

http.createServer(function(request, response) {

console.log(request.headers);

response.writeHead(200,{'Content-Type': 'text/plain'});

response.write('hello client!');

response.end();

}).listen(8888,'127.0.0.1');

console.log('Server running at ');

console.log('http://127.0.0.1:8888/');

§ The web server can access the header
information sent by the client

28

§ The only required change to the server code is
the addition of the following line to the
createServer() method
console.log(request.headers);

§ The argument passed to the console.log is
the returned header information obtained by
request.headers

§ Note: the output will be sent to the ssh session
window that started the server

Request Header

29

var http = require('http'); // import http module

var qs = require('querystring');

http.createServer(function (request, response) {

console.log(qs.stringify(request.headers));

response.writeHead(200,{'Content-Type': 'text/plain'});
response.write('hello client!');
response.end();

}).listen(8888,'127.0.0.1');

console.log('Server running at http://127.0.0.1:8888/');

§ If the web server needs to process the header
information, querystring is needed

Request Header

30

§ The querystring module is imported and
assigned to an instance variable qs
§ The qs object is used to call stringify()

method, which converts the value of its argument
§ The argument passed to stringify() is the

returned header information obtained by
request.headers

§ Note: the output from this response will be
one long string that needs to be parsed to
extract the relevant information

Request Header

31Running the Server on Ceto
n When executing this server code on

ceto.murdoch.edu.au, you must use the port
number assigned to you; not 80 or 8888

n You may also wish to specify the IP number or
hostname for ceto in the listen() method of
the server code

n And do not forget to kill the server when
you have finished working
n The repetition of this message MUST be getting

annoying for you; just think how the sysadmin feels
when you don’t kill your servers

32Read the Scripts

n Study the scripts and analyze their operations
line-by-line

n Check with JavaScript and Node.js
documentation for any commands that you are
unsure about

n In lab 3, you will test your server with the three
client approaches discussed in these lecture
notes

33Acknowledgement

n The code snippets were sourced from:
Basarat, A.S., Beginning Node.js

n The conceptual theory was derived from:
Node.js website: https://nodejs.org/en/
Basarat, A.S., Beginning Node.js

Application
Development
In Node.js:
Preliminaries
Lecture 3 (C)

2Recapitulation
§ In the previous lectures, we have developed

the code for a very basic HTTP server (in the
file server.js), which can receive HTTP
client requests

§ We have seen how to encapsulate the server
functionality in a function and how to export
that function, so that other scripts can import
and use the server

3Why Export?
§ By exporting functionality from various parts of

an application we can make it modular:
§ This makes the development process easier to

control and we end up with a better design
§ It is also better for future development and

maintenance
§ So the point can be made here: it is expected

that for your work in this unit, you will make
your own applications modular
§ In assignment 1 this is an assessment factor

4Where to Place the Server?
§ So how can we use our server to develop an

application AND where in an application do we
place our server module?

§ It is common practice to have a main file
called index.js which is used to start an
application by making use of the other
modules of the application

§ Thus the server module can be called from
index.js

5How to Organize The Application?
§ However, we will come back to this later …
§ Firstly, in order to have our application accept

requests from various client sources (and
react accordingly), our server needs to
redirect program flow to different parts of our
application code to satisfy different HTTP
client requests

§ This is called 'routing'

6Routing Requests
§ We need to be able to route requests by

deciding upon the most appropriate code to
execute according to the request
§ The code to execute the different requests will be a

collection of request handlers that do the actual
work when a request is received

§ So to determine where to route to, we need to
look at the URL and extract information from
the HTTP requests

7

§ All the information we need to process the
request is available through the request
object, which is passed as the first parameter
to our onRequest() callback function (or the
anonymous function)

§ We can utilize some additional Node.js
modules to process the incoming requests
§ Namely, 'url' and 'querystring'

Routing Requests

8URL and Querystring Modules

§ The url module provides methods which allow
us to extract the different parts of a URL; this
includes the path and the query
§ Path is where the required resource is located

within the file system that resides on the server
§ Query may be the actual required resource

§ The querystring module can be used to
parse the query part of the URL request
parameters

9Examples
Example url assuming last lecture’s server is running:
http://localhost:8888/startServer?foo=bar&hello=world

var path=url.parse(string).pathname; -> /startServer

var qstr=url.parse(string).query; -> foo=bar&hello=world

querystring.parse(qstr)["foo"]; -> bar
querystring.parse(qstr)["hello"]; -> world

where the string to be parsed is the request.url

§ Look up the online documentation for these core
modules to learn how to obtain the various parts of the
url and other usages for querystring

10

§ The application will need be able to distinguish
between requests based on the URL path
requested

§ This will allow the mapping of requests to
request handlers based on the URL path

§ So, let us now add to our onRequest() (or
anonymous function), the logic needed to find
the URL path the client has requested

Routing Requests

11

var http = require("http"); // import http core modules

var url = require("url"); // import url core modules

http.createServer(function (request, response) {

// use url module to get pathname of requested resource

var pathname = url.parse(request.url).pathname;

console.log("Request for " + pathname + " received.");

response.writeHead(200, {"Content-Type": "text/plain"});

response.write("Hello World");

response.end();

}).listen(8888);

console.log("Server has started.");

server.js Script

12

n Now let us export the server so that other
scripts are able to utilize our web server
n Remember, we only need to export that specific

functionality associated with starting the server
n We do this by encapsulating the required

functionality in a function

Exporting The Server

13

var http = require("http"); // import http core modules
var url = require("url"); // import url core modules

function startServer(){

http.createServer(function (request, response) {

var pathname = url.parse(request.url).pathname;

console.log("Request for " + pathname + " received.");

response.writeHead(200,

{"Content-Type": "text/plain"});

response.write("Hello World");

response.end();

}).listen(8888);

console.log("Server has started.");
}
exports.startServer = startServer;

Exporting The Server

14Create router.js Script
n To keep with our modular design approach, let

us now create a new file called router.js, with
the following content:
// create route function with pathname as parameter

function route(pathname) {

console.log("Routing a request for " + pathname);

}

// export route function

exports.route = route;

15router.js Script

n Note that the route() function takes the
pathname as its parameter
n At this stage we just print the pathname

n Also note that we have exported the route()
function

16Re-Factor server.js

n To use the route module, we need to re-factor
server.js
n Firstly, we pass the route() function as a

parameter to startServer()
n We then enter a new line of code in the server

script, to call the route() function with its
argument - the pathname

n The pathname is obtained in the server code

17

var http = require("http"); // import http core modules
var url = require("url"); // import url core modules

function startServer(route){

http.createServer(function (request, response) {

var pathname = url.parse(request.url).pathname;

route(pathname);

response.writeHead(200, {"Content-Type": "text/plain"});

response.write("Hello World");

response.end();

}).listen(8888);

console.log("Server has started.");
}
exports.startServer = startServer;

Re-Factor server.js

18index.js Script
n We mentioned earlier that it is typical to use a

script (index.js) to start and control the
modules of an application

n To use the functionality provided by both of our
modules, we import both modules into a new
script called index.js
n As startServer() and route() functions were

exported, we can import the appropriate modules
and include them in the same manner that we do
for the core modules

19index.js Script

// import our exported modules
var server = require("./server");
var router = require("./router");

// call the startServer() function associated

// with the server object

// pass the route() function associated with

// the router object as its parameter

server.startServer(router.route);

20

n Note that the require directive uses the
filename (minus the file extension) to import
the modules
n The preceding characters to the filenames ('./')

indicate that both scripts are located in the current
working directory (i.e., the same directory as the
index.js script)

index.js Script

21

n The instance variables assigned the imported
objects are then able to access the functions
provided by our modules

n So we call server.startServer() and
pass the parameter router.route
n Note that we passed the function route() not the

object router (neither the result of function
invocation)

n i.e., the router object is used to access the
function, and it is the function that is passed, not
the object

index.js Script

22

n To test in a terminal, run on command line:
node index.js

§ In another terminal, run on command line:
curl http://localhost:8888

§ Output should be like this:
Server has started.
Request for / received.
Routing a request for /
§ Note: / refers to the root of the server application, not the root of the

filesystem of the machine the server resides on

Testing index.js

23Read the Scripts
n Study the scripts and analyze the operations

line-by-line
n Please make sure you read and understand

ALL of the code discussed in these lecture
notes
n You will need this understanding to complete the

work for Labs 3 and 4 and Assignment 1
n Check with JavaScript and Node.js for any code

that you are unsure about

24Acknowledgement

n Kiessling, M., The Node Beginner Book: A
comprehensive Node.js tutorial. 10/10/2015

